Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
J Virol ; 97(5): e0037523, 2023 05 31.
Article in English | MEDLINE | ID: covidwho-2316566

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that has the potential to infect humans. Histone deacetylase 6 (HDAC6) is a unique type IIb cytoplasmic deacetylase with both deacetylase activity and ubiquitin E3 ligase activity, which mediates a variety of cellular processes by deacetylating histone and nonhistone substrates. In this study, we found that ectopic expression of HDAC6 significantly inhibited PDCoV replication, while the reverse effects could be observed after treatment with an HDAC6-specific inhibitor (tubacin) or knockdown of HDAC6 expression by specific small interfering RNA. Furthermore, we demonstrated that HDAC6 interacted with viral nonstructural protein 8 (nsp8) in the context of PDCoV infection, resulting in its proteasomal degradation, which was dependent on the deacetylation activity of HDAC6. We further identified the key amino acid residues lysine 46 (K46) and K58 of nsp8 as acetylation and ubiquitination sites, respectively, which were required for HDAC6-mediated degradation. Through a PDCoV reverse genetics system, we confirmed that recombinant PDCoV with a mutation at either K46 or K58 exhibited resistance to the antiviral activity of HDAC6, thereby exhibiting higher replication compared with wild-type PDCoV. Collectively, these findings contribute to a better understanding of the function of HDAC6 in regulating PDCoV infection and provide new strategies for the development of anti-PDCoV drugs. IMPORTANCE As an emerging enteropathogenic coronavirus with zoonotic potential, porcine deltacoronavirus (PDCoV) has sparked tremendous attention. Histone deacetylase 6 (HDAC6) is a critical deacetylase with both deacetylase activity and ubiquitin E3 ligase activity and is extensively involved in many important physiological processes. However, little is known about the role of HDAC6 in the infection and pathogenesis of coronaviruses. Our present study demonstrates that HDAC6 targets PDCoV-encoded nonstructural protein 8 (nsp8) for proteasomal degradation through the deacetylation at the lysine 46 (K46) and the ubiquitination at K58, suppressing viral replication. Recombinant PDCoV with a mutation at K46 and/or K58 of nsp8 displayed resistance to the antiviral activity of HDAC6. Our work provides significant insights into the role of HDAC6 in regulating PDCoV infection, opening avenues for the development of novel anti-PDCoV drugs.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Animals , Antiviral Agents/pharmacology , Antiviral Agents/metabolism , Coronavirus/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Lysine/metabolism , Swine , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Virus Replication
2.
J Med Virol ; 95(4): e28719, 2023 04.
Article in English | MEDLINE | ID: covidwho-2299549

ABSTRACT

The innate immune response is the first line of host defense against viral infections, but its role in immunity against SARS-CoV-2 remains unclear. By using immunoprecipitation coupled with mass spectroscopy, we observed that the E3 ubiquitin ligase TRIM21 interacted with the SARS-CoV-2 nucleocapsid (N) protein and ubiquitinated it at Lys375 . Upon determining the topology of the TRIM21-mediated polyubiquitination chain on N protein, we then found that polyubiquitination led to tagging of the N protein for degradation by the host cell proteasome. Furthermore, TRIM21 also ubiquitinated the N proteins of SARS-CoV-2 variants of concern, including Alpha, Beta, Gamma, Delta, and Omicron together with SARS-CoV and MERS-CoV variants. Herein, we propose that ubiquitylation and degradation of the SARS-CoV-2 N protein inhibited SARS-CoV-2 viral particle assembly, by which it probably involved in preventing cytokine storm. Eventually, our study has fully revealed the association between the host innate immune system and SARS-CoV-2 N protein, which may aid in developing novel SARS-CoV-2 treatment strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Immunity, Innate , SARS-CoV-2/metabolism , Ubiquitin/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/metabolism
3.
Am J Respir Cell Mol Biol ; 68(5): 480-481, 2023 05.
Article in English | MEDLINE | ID: covidwho-2272932
4.
Mol Immunol ; 154: 45-53, 2023 02.
Article in English | MEDLINE | ID: covidwho-2165718

ABSTRACT

mascRNA (MALAT1-associated small cytoplasmic RNA) is a tRNA-like cytoplasmic small noncoding RNA whose function remains elusive. We previously revealed that this small RNA negatively regulates TLR4/2-triggered proinflammatory response while positively regulates TLR3-induced antiviral response. Here, we investigated whether and how mascRNA influences the stimulator of interferon genes (STING) signaling-triggered immune response. We found that overexpression of mascRNA inhibited the expression of type I interferon (IFN) genes and proinflammatory cytokines in response to cytosolic DNA stimulation; meanwhile, the abundance of STING protein and the level of phosphorylated TBK1 and STAT1 was decreased. By contrast, depletion of mascRNA potentiated the expression of type I IFNs, increased STING protein abundance, and promoted STING-mediated phosphorylation of TBK1 and STAT1 in response to DNA stimulation. In a mouse model of DNA-induced lung injury, exogenous mascRNA mitigated the antiviral response and the severity of lung inflammation. Mechanically, mascRNA was found to promote STING for K48-linked ubiquitination and degradation in macrophages both with and without cytosolic DNA stimulation. Hence, mascRNA suppresses STING-TBK1 signaling-mediated innate immunity through promoting proteasomal degradation of STING, and this tRNA-like small RNA holds promise for the treatment of certain inflammatory diseases such as COVID-19 where aberrant STING signaling drives type I IFN immunopathology.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , Antiviral Agents , DNA , Immunity, Innate , Interferon Type I/metabolism , Membrane Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA/metabolism , Ubiquitination
5.
Clin Transl Med ; 12(12): e1103, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2127659

ABSTRACT

BACKGROUND: The crosstalk between the ubiquitin-proteasome and the immune system plays an important role in the health and pathogenesis of viral infection. However, there have been few studies of ubiquitin activation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: We investigated the effect of ubiquitination on SARS-CoV-2 infection and patient prognosis by integrating published coronavirus disease 2019 (COVID-19) multi-transcriptome data and bioinformatics methods. RESULTS: The differential expression of COVID-19 samples revealed changed ubiquitination in most solid and hollow organs, and it was activated in lymphatic and other immune tissues. In addition, in the respiratory system of COVID-19 patients, the immune response was mainly focused on the alveoli, and the expression of ubiquitination reflected increasing immune infiltration. Ubiquitination stratification could significantly differentiate patients' prognosis and inflammation levels through the general transcriptional analysis of the peripheral blood of patients with COVID-19. Moreover, high ubiquitination levels were associated with a favourable prognosis, low inflammatory response, and reduced mechanical ventilation and intensive care unit. Moreover, high ubiquitination promoted a beneficial immune response while inhibiting immune damage. Finally, prognostic stratification and biomarker screening based on ubiquitination traits played an important role in clinical management and drug development. CONCLUSION: Ubiquitination characteristics provides new ideas for clinical intervention and prognostic guidance for COVID-19 patients.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/genetics , Ubiquitination/genetics , Ubiquitin , Proteasome Endopeptidase Complex
6.
Front Cell Infect Microbiol ; 12: 1041682, 2022.
Article in English | MEDLINE | ID: covidwho-2141716

ABSTRACT

Understanding the targets and interactions of long non-coding RNAs (lncRNAs) related to the retinoic acid-inducible gene-I (RIG-I) signaling pathway is essential for developing interventions, which would enable directing the host inflammatory response regulation toward protective immunity. In the RIG-I signaling pathway, lncRNAs are involved in the important processes of ubiquitination, phosphorylation, and glycolysis, thus promoting the transport of the interferon regulatory factors 3 and 7 (IRF3 and IRF7) and the nuclear factor kappa B (NF-κB) into the nucleus, and activating recruitment of type I interferons (IFN-I) and inflammatory factors to the antiviral action site. In addition, the RIG-I signaling pathway has recently been reported to contain the targets of coronavirus disease-19 (COVID-19)-related lncRNAs. The molecules in the RIG-I signaling pathway are directly regulated by the lncRNA-microRNAs (miRNAs)-messenger RNA (mRNA) axis. Therefore, targeting this axis has become a novel strategy for the diagnosis and treatment of cancer. In this paper, the studies on the regulation of the RIG-I signaling pathway by lncRNAs during viral infections and cancer are comprehensively analyzed. The aim is to provide a solid foundation of information for conducting further detailed studies on lncRNAs and RIG-I in the future and also contribute to clinical drug development.


Subject(s)
COVID-19 , Interferon Type I , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Signal Transduction , Ubiquitination , Interferon Type I/genetics
7.
Signal Transduct Target Ther ; 7(1): 300, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-2031821

ABSTRACT

Ubiquitination is a highly conserved and fundamental posttranslational modification (PTM) in all eukaryotes regulating thousands of proteins. The RING (really interesting new gene) finger (RNF) protein, containing the RING domain, exerts E3 ubiquitin ligase that mediates the covalent attachment of ubiquitin (Ub) to target proteins. Multiple reviews have summarized the critical roles of the tripartite-motif (TRIM) protein family, a subgroup of RNF proteins, in various diseases, including cancer, inflammatory, infectious, and neuropsychiatric disorders. Except for TRIMs, since numerous studies over the past decades have delineated that other RNF proteins also exert widespread involvement in several diseases, their importance should not be underestimated. This review summarizes the potential contribution of dysregulated RNF proteins, except for TRIMs, to the pathogenesis of some diseases, including cancer, autoimmune diseases, and neurodegenerative disorder. Since viral infection is broadly involved in the induction and development of those diseases, this manuscript also highlights the regulatory roles of RNF proteins, excluding TRIMs, in the antiviral immune responses. In addition, we further discuss the potential intervention strategies targeting other RNF proteins for the prevention and therapeutics of those human diseases.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Neoplasms/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/genetics
8.
Med Sci Monit ; 28: e937532, 2022 Aug 29.
Article in English | MEDLINE | ID: covidwho-2025555

ABSTRACT

BACKGROUND We sought to further our understanding of the biological characteristics underlying severe COVID-19. MATERIAL AND METHODS RNA sequencing (RNA-Seq) analysis was used to evaluate peripheral blood mononuclear cells from 4 patients with severe COVID-19 and 4 healthy controls. We performed gene expression analyses to detect differentially expressed genes (DEGs). Enrichment analyses were performed to identify their molecular processes and signaling pathways, and the protein-protein interaction network was constructed to extract the core gene cluster. The investigation of protein-chemical interactions and regulatory signatures for specific regulatory checkpoints and powerful chemical agents was then conducted for these essential genes. Finally, we used single-cell RNA-Seq analysis from an online platform to show how these genes were expressed differently, depending on the kind of cell. RESULTS A total of 268 DEGs were found. The biological process of protein ubiquitination was later discovered to be highly influenced by the core gene cluster (ITCH, TRIM21, RNF130, FBXO11, UBE2J1, and ASB16) at the transcriptome level. Six transcription factors, FNIC, FOXA1, YY1, GATA2, MET2A, and FOXC1, as well as miRNAs hsa-miR-1-3p and hsa-miR-27a-3p were identified. We found a potent chemical agent, copper sulfate, may regulate protein ubiquitination genes cooperatively, and the genes regulating protein ubiquitination could be expressed highly on the macrophages. CONCLUSIONS Taken together, we suggest that protein ubiquitination is a crucial functional process in patients with severe COVID-19. This study will give a deeper insight into biological characteristics and progression of COVID-19 and facilitate development of novel therapeutics, leading to significant advancements in the COVID-19 pandemic.


Subject(s)
COVID-19 , F-Box Proteins , MicroRNAs , Gene Expression Profiling , Gene Regulatory Networks , Humans , Leukocytes, Mononuclear , Pandemics , Protein-Arginine N-Methyltransferases , Transcriptome , Ubiquitination
9.
Signal Transduct Target Ther ; 7(1): 312, 2022 09 07.
Article in English | MEDLINE | ID: covidwho-2008259

ABSTRACT

The Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a global pandemic that seriously threatens health and socioeconomic development, but the existed antiviral drugs and vaccines still cannot yet halt the spread of the epidemic. Therefore, a comprehensive and profound understanding of the pathogenesis of SARS-CoV-2 is urgently needed to explore effective therapeutic targets. Here, we conducted a multiomics study of SARS-CoV-2-infected lung epithelial cells, including transcriptomic, proteomic, and ubiquitinomic. Multiomics analysis showed that SARS-CoV-2-infected lung epithelial cells activated strong innate immune response, including interferon and inflammatory responses. Ubiquitinomic further reveals the underlying mechanism of SARS-CoV-2 disrupting the host innate immune response. In addition, SARS-CoV-2 proteins were found to be ubiquitinated during infection despite the fact that SARS-CoV-2 itself didn't code any E3 ligase, and that ubiquitination at three sites on the Spike protein could significantly enhance viral infection. Further screening of the E3 ubiquitin ligases and deubiquitinating enzymes (DUBs) library revealed four E3 ligases influencing SARS-CoV-2 infection, thus providing several new antiviral targets. This multiomics combined with high-throughput screening study reveals that SARS-CoV-2 not only modulates innate immunity, but also promotes viral infection, by hijacking ubiquitination-specific processes, highlighting potential antiviral and anti-inflammation targets.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , Humans , Proteomics , Ubiquitin-Protein Ligases , Ubiquitination/genetics
10.
Front Immunol ; 13: 947272, 2022.
Article in English | MEDLINE | ID: covidwho-2005872

ABSTRACT

The newly emerged severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) can result in dysregulated interferon (IFN) responses that contribute to disease severity. The papain-like protease of SARS-CoV-2 (SCoV2-PLpro) has been previously reported to attenuate IFN responses, but the underlying mechanism is not fully understood. In this study, we found that SCoV2-PLpro potently suppressed IFN production and signaling induced by Sendai virus as well as RIG-I-like receptor (RLR) signaling pathway components, including RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3. SCoV2-PLpro exhibited different specificity and efficiency than SARS-CoV PLpro, with the former exerting a greater inhibitory effect on the RIG-I- and TRAF3-mediated IFN response but a weaker effect on the MAVS-mediated IFN response. Furthermore, we showed that SCoV2-PLpro significantly reduced K63-ubiquitination of RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3 and K48-ubiquitination of IκBα, which are known critical for the innate immune signal transduction. The deubiquitinating (DUB) activity of SCoV2-PLpro required a catalytic residue cysteine 111 (C111) but not the UBL domain. Notably, by utilizing the DUB-defective C111 mutant, we demonstrated that SCoV2-PLpro targeted RLR signaling pathway regulators via deubiquitination-dependent and -independent mechanisms, with the inhibitory activities of RIG-I and TBK1 correlating with DUB function, whereas the antagonism effects on MAVS, TRAF3, TRAF6, and IRF3 independent on DUB activity. Overall, our results reveal that SCoV2-PLpro evolves differential IFN antagonism activity from SCoV1-PLpro and it targets multiple key RLR signaling pathway components via various mechanisms, providing insights into SARS-CoV-2 pathogenesis and clues for developing antiviral therapies for COVID-19.


Subject(s)
Coronavirus Papain-Like Proteases , DEAD Box Protein 58 , Receptors, Immunologic , SARS-CoV-2 , Signal Transduction , COVID-19 , Coronavirus Papain-Like Proteases/metabolism , DEAD Box Protein 58/metabolism , Humans , Receptors, Immunologic/metabolism , SARS-CoV-2/enzymology , Ubiquitination
11.
J Virol ; 96(17): e0074122, 2022 09 14.
Article in English | MEDLINE | ID: covidwho-1992937

ABSTRACT

Within the past 2 decades, three highly pathogenic human coronaviruses have emerged, namely, severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The health threats and economic burden posed by these tremendously severe coronaviruses have paved the way for research on their etiology, pathogenesis, and treatment. Compared to SARS-CoV and SARS-CoV-2, MERS-CoV genome encoded fewer accessory proteins, among which the ORF4b protein had anti-immunity ability in both the cytoplasm and nucleus. Our work for the first time revealed that ORF4b protein was unstable in the host cells and could be degraded by the ubiquitin proteasome system. After extensive screenings, it was found that UBR5 (ubiquitin protein ligase E3 component N-recognin 5), a member of the HECT E3 ubiquitin ligases, specifically regulated the ubiquitination and degradation of ORF4b. Similar to ORF4b, UBR5 can also translocate into the nucleus through its nuclear localization signal, enabling it to regulate ORF4b stability in both the cytoplasm and nucleus. Through further experiments, lysine 36 was identified as the ubiquitination site on the ORF4b protein, and this residue was highly conserved in various MERS-CoV strains isolated from different regions. When UBR5 was knocked down, the ability of ORF4b to suppress innate immunity was enhanced and MERS-CoV replication was stronger. As an anti-MERS-CoV host protein, UBR5 targets and degrades ORF4b protein through the ubiquitin proteasome system, thereby attenuating the anti-immunity ability of ORF4b and ultimately inhibiting MERS-CoV immune escape, which is a novel antagonistic mechanism of the host against MERS-CoV infection. IMPORTANCE ORF4b was an accessory protein unique to MERS-CoV and was not present in SARS-CoV and SARS-CoV-2 which can also cause severe respiratory disease. Moreover, ORF4b inhibited the production of antiviral cytokines in both the cytoplasm and the nucleus, which was likely to be associated with the high lethality of MERS-CoV. However, whether the host proteins regulate the function of ORF4b is unknown. Our study first determined that UBR5, a host E3 ligase, was a potential host anti-MERS-CoV protein that could reduce the protein level of ORF4b and diminish its anti-immunity ability by inducing ubiquitination and degradation. Based on the discovery of ORF4b-UBR5, a critical molecular target, further increasing the degradation of ORF4b caused by UBR5 could provide a new strategy for the clinical development of drugs for MERS-CoV.


Subject(s)
Coronavirus Infections , Host Microbial Interactions , Middle East Respiratory Syndrome Coronavirus , Proteolysis , Ubiquitin-Protein Ligases , Ubiquitination , Viral Proteins , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cytokines/immunology , Humans , Immunity, Innate , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/metabolism , Molecular Targeted Therapy , Proteasome Endopeptidase Complex/metabolism , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Replication
12.
Nat Chem Biol ; 18(11): 1214-1223, 2022 11.
Article in English | MEDLINE | ID: covidwho-1991635

ABSTRACT

The E3 ligase TRIM7 has emerged as a critical player in viral infection and pathogenesis. However, the mechanism governing the TRIM7-substrate association remains to be defined. Here we report the crystal structures of TRIM7 in complex with 2C peptides of human enterovirus. Structure-guided studies reveal the C-terminal glutamine residue of 2C as the primary determinant for TRIM7 binding. Leveraged by this finding, we identify norovirus and SARS-CoV-2 proteins, and physiological proteins, as new TRIM7 substrates. Crystal structures of TRIM7 in complex with multiple peptides derived from SARS-CoV-2 proteins display the same glutamine-end recognition mode. Furthermore, TRIM7 could trigger the ubiquitination and degradation of these substrates, possibly representing a new Gln/C-degron pathway. Together, these findings unveil a common recognition mode by TRIM7, providing the foundation for further mechanistic characterization of antiviral and cellular functions of TRIM7.


Subject(s)
COVID-19 , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/metabolism , Glutamine/metabolism , SARS-CoV-2 , Ubiquitination , Antiviral Agents , Tripartite Motif Proteins/metabolism
13.
J Cell Biol ; 221(7)2022 07 04.
Article in English | MEDLINE | ID: covidwho-1956550

ABSTRACT

The process of membrane atg8ylation, defined herein as the conjugation of the ATG8 family of ubiquitin-like proteins to membrane lipids, is beginning to be appreciated in its broader manifestations, mechanisms, and functions. Classically, membrane atg8ylation with LC3B, one of six mammalian ATG8 family proteins, has been viewed as the hallmark of canonical autophagy, entailing the formation of characteristic double membranes in the cytoplasm. However, ATG8s are now well described as being conjugated to single membranes and, most recently, proteins. Here we propose that the atg8ylation is coopted by multiple downstream processes, one of which is canonical autophagy. We elaborate on these biological outputs, which impact metabolism, quality control, and immunity, emphasizing the context of inflammation and immunological effects. In conclusion, we propose that atg8ylation is a modification akin to ubiquitylation, and that it is utilized by different systems participating in membrane stress responses and membrane remodeling activities encompassing autophagy and beyond.


Subject(s)
Autophagy , Ubiquitins , Animals , Autophagy/physiology , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Mammals/metabolism , Microtubule-Associated Proteins/metabolism , Ubiquitination , Ubiquitins/genetics
14.
PLoS Pathog ; 18(6): e1010095, 2022 06.
Article in English | MEDLINE | ID: covidwho-1951565

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), triggers enhanced accumulation of lipids to generate foamy macrophages (FMs). This process has been often attributed to the surge in the expression of lipid influx genes with a concomitant decrease in those involved in lipid efflux. Here, we define an Mtb-orchestrated modulation of the ubiquitination of lipid accumulation markers to enhance lipid accretion during infection. We find that Mtb infection represses the expression of the E3 ubiquitin ligase, ITCH, resulting in the sustenance of key lipid accrual molecules viz. ADRP and CD36, that are otherwise targeted by ITCH for proteasomal degradation. In line, overexpressing ITCH in Mtb-infected cells was found to suppress Mtb-induced lipid accumulation. Molecular analyses including loss-of-function and ChIP assays demonstrated a role for the concerted action of the transcription factor YY1 and the arginine methyl transferase PRMT5 in restricting the expression of Itch gene by conferring repressive symmetrical H4R3me2 marks on its promoter. Consequently, siRNA-mediated depletion of YY1 or PRMT5 rescued ITCH expression, thereby compromising the levels of Mtb-induced ADRP and CD36 and limiting FM formation during infection. Accumulation of lipids within the host has been implicated as a pro-mycobacterial process that aids in pathogen persistence and dormancy. In line, we found that perturbation of PRMT5 enzyme activity resulted in compromised lipid levels and reduced mycobacterial survival in mouse peritoneal macrophages (ex vivo) and in a therapeutic mouse model of TB infection (in vivo). These findings provide new insights into the role of PRMT5 and YY1 in augmenting mycobacterial pathogenesis. Thus, we posit that our observations could help design novel adjunct therapies and combinatorial drug regimen for effective anti-TB strategies.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Lipids , Mice , Mycobacterium tuberculosis/genetics , Protein-Arginine N-Methyltransferases , Tuberculosis/genetics , Tuberculosis/therapy , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
15.
mBio ; 13(4): e0097122, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1950002

ABSTRACT

Patients with severe coronavirus disease 2019 tend to have high levels of proinflammatory cytokines, which eventually lead to cytokine storm and the development of acute respiratory distress syndrome. However, the detailed molecular mechanisms of proinflammatory cytokine production remain unknown. Here, we screened severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genes and found that nonstructural protein 6 (NSP6) and open reading frame 7a (ORF7a) activated the NF-κB pathway. NSP6 and ORF7a interacted with transforming growth factor ß-activated kinase 1 (TAK1), and knockout (KO) of TAK1 or NF-κB essential modulator (NEMO) abolished NF-κB activation by NSP6 and ORF7a. Interestingly, K61 of NSP6 was conjugated to K63-linked polyubiquitin chains by the E3 ubiquitin ligase tripartite motif-containing 13, and this polyubiquitination of NSP6 appeared crucial for recruitment of NEMO to the NSP6-TAK1 complex and NF-κB activation. On the other hand, ring finger protein 121 (RNF121) was required for the polyubiquitination of ORF7a. Knockdown of RNF121 significantly decreased ORF7a binding of TAK1 and NEMO, resulting in the suppression of NF-κB activation. Taken together, our results provide novel molecular insights into the pathogenesis of SARS-CoV-2 and the host immune response to SARS-CoV-2 infection. IMPORTANCE The detailed molecular basis of the induction of proinflammatory cytokines and chemokines by SARS-CoV-2 is unclear, although such induction is clearly related to the severity of COVID-19. Here, we show that SARS-CoV-2 NSP6 and ORF7a lead to NF-κB activation through associations with TAK1. K63-linked polyubiquitination of NSP6 and ORF7a by TRIM13 and RNF121, respectively, appears essential for NF-κB activation. These results suggest that inhibition of the NSP6 and ORF7a gene products may reduce the severity of COVID-19 symptoms by decreasing proinflammatory cytokine levels.


Subject(s)
COVID-19 , NF-kappa B , Cytokines/metabolism , Humans , NF-kappa B/metabolism , Open Reading Frames , SARS-CoV-2/genetics , Ubiquitination
16.
Int J Mol Sci ; 21(14)2020 Jul 08.
Article in English | MEDLINE | ID: covidwho-1934087

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) are characterized by an inflammatory response, alveolar edema, and hypoxemia. ARDS occurs most often in the settings of pneumonia, sepsis, aspiration of gastric contents, or severe trauma. The prevalence of ARDS is approximately 10% in patients of intensive care. There is no effective remedy with mortality high at 30-40%. Most functional proteins are dynamic and stringently governed by ubiquitin proteasomal degradation. Protein ubiquitination is reversible, the covalently attached monoubiquitin or polyubiquitin moieties within the targeted protein can be removed by a group of enzymes called deubiquitinating enzymes (DUBs). Deubiquitination plays an important role in the pathobiology of ALI/ARDS as it regulates proteins critical in engagement of the alveolo-capillary barrier and in the inflammatory response. In this review, we provide an overview of how DUBs emerge in pathogen-induced pulmonary inflammation and related aspects in ALI/ARDS. Better understanding of deubiquitination-relatedsignaling may lead to novel therapeutic approaches by targeting specific elements of the deubiquitination pathways.


Subject(s)
Acute Lung Injury/metabolism , Deubiquitinating Enzymes/metabolism , Respiratory Distress Syndrome/metabolism , Animals , Humans , Pneumonia/metabolism , Signal Transduction/physiology , Ubiquitin/metabolism , Ubiquitination/physiology
17.
Biomolecules ; 12(7)2022 07 01.
Article in English | MEDLINE | ID: covidwho-1917275

ABSTRACT

Ubiquitin is a small protein that is conjugated to target proteins to signal a great number of critical biological processes. Impaired ubiquitin signaling and defects in the ubiquitin proteasome system (UPS) surveillance are implicated in many human diseases, including cancer. Characterization of the physiological roles of UPS components and their regulatory mechanisms is therefore vital for the identification of therapeutic targets and the development of tools and paradigms to better understand and treat human diseases. In this Special Issue, we assembled seven original research and review articles to provide insights on the multifaceted role of the UPS in pathogenesis and disease, covering the areas of molecular and cellular mechanisms of UPS enzymes, biochemical and biophysical characterization strategies, drug development, and targeted protein degradation.


Subject(s)
Neoplasms , Ubiquitin , Humans , Neoplasms/genetics , Proteasome Endopeptidase Complex/metabolism , Signal Transduction , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
18.
Cells ; 11(9)2022 04 30.
Article in English | MEDLINE | ID: covidwho-1822414

ABSTRACT

The p53-dependent ubiquitin ligase Pirh2 regulates a number of proteins involved in different cancer-associated processes. Targeting the p53 family proteins, Chk2, p27Kip1, Twist1 and others, Pirh2 participates in such cellular processes as proliferation, cell cycle regulation, apoptosis and cellular migration. Thus, it is not surprising that Pirh2 takes part in the initiation and progression of different diseases and pathologies including but not limited to cancer. In this review, we aimed to summarize the available data on Pirh2 regulation, its protein targets and its role in various diseases and pathological processes, thus making the Pirh2 protein a promising therapeutic target.


Subject(s)
Tumor Suppressor Protein p53 , Ubiquitin-Protein Ligases , Cell Cycle Checkpoints , Tumor Suppressor Protein p53/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
Clin Immunol ; 238: 109027, 2022 05.
Article in English | MEDLINE | ID: covidwho-1814259

ABSTRACT

COVID-19 infection activates the immune system to cause autoimmune and autoinflammatory diseases. We provide a comprehensive review of the relationship between SARS-CoV-2, NOD2 and ubiquitination. COVID-19 infection partly results from host inborn errors and genetic factors and can lead to autoinflammatory disease. The interaction between defective NOD2 and viral infection may trigger NOD2-associated disease. SARS-CoV-2 can alter UBA1 and abnormal ubiquitination leading to VEXAS syndrome. Both NOD2 and ubiquitination play important roles in controlling inflammatory process. Receptor interacting protein kinase 2 is a key component of the NOD2 activation pathway and becomes ubiquitinated to recruit downstream effector proteins. NOD2 mutations result in loss of ubiquitin binding and increase ligand-stimulated NOD2 signaling. During viral infection, mutations of either NOD2 or UBA1 genes or in combination can facilitate autoinflammatory disease. COVID-19 infection can cause autoinflammatory disease. There are reciprocal interactions between SARS-CoV-2, NOD2 and ubiquitination.


Subject(s)
COVID-19 , Hereditary Autoinflammatory Diseases , Hereditary Autoinflammatory Diseases/genetics , Humans , Nod2 Signaling Adaptor Protein/genetics , SARS-CoV-2 , Ubiquitin/metabolism , Ubiquitination
20.
J Cell Biol ; 221(3)2022 03 07.
Article in English | MEDLINE | ID: covidwho-1795409

ABSTRACT

Bo Zhong studies the regulation of the antiviral innate immunity, inflammation, and tumorigenesis by the protein ubiquitination system.


Subject(s)
Allergy and Immunology/history , Immunity, Innate , Ubiquitination , Virology/history , Animals , China , History, 21st Century , Host-Pathogen Interactions , Humans
SELECTION OF CITATIONS
SEARCH DETAIL